Categorías: Matemáticas

Función matemática

Función matemáticaFunción matemática

Uno de los distintos tipos de correspondencias que pueden encontrarse entre conjuntos matemáticos es la Función. Empero, previo a continuar con una explicación sobre ella, se revisarán algunas definiciones, que de seguro permitirán entender posteriormente la Función, dentro de su justo contexto matemático.

Definiciones fundamentales

De esta manera, también se decidirá limitar esta revisión teórica a dos nociones específicas: Conjuntos y Correspondencias, por encontrarse directamente relacionadas con el tipo de Aplicación que se estudiará posteriormente. A continuación, cada una de estas definiciones:

Conjuntos matemáticos

Por consiguiente, se comenzará por decir entonces que los Conjuntos matemáticos han sido explicados básicamente como la reunión o agrupación de elementos, que pueden ser considerados como propios de la misma naturaleza, es decir que son homogéneos. Así mismo, entre otras de las definiciones que pueden existir para los Conjuntos se encontrará aquella que los define como una colección abstracta y homogénea de elementos.

Además, las distintas fuentes matemáticas han señalado que los elementos que conforman el Conjunto se caracterizarán por contar con la capacidad de definir y determinar de manera única y exclusiva al Conjunto que conforman. Con respecto a la forma en que deben ser expresados este tipo de colecciones, las Matemáticas señalan que sus elementos deben ser separados por comas, al tiempo que serán incluidas entre llaves: { }.

Correspondencia entre conjuntos

En segunda instancia, también será necesario lanzar luces sobre la definición de Correspondencia entre conjuntos, la cual ha sido explicada entonces como la relación matemática que se establece entre dos conjuntos matemáticos, cuando los elementos de la primera colección se encuentran vinculados con elementos de la segunda colección, en base a un criterio de formación específico, el cual recibe el nombre de Grafo.

Igualmente, las Matemáticas han señalado que en las Correspondencias pueden distinguirse tres tipos de colecciones o conjuntos, las cuales han sido explicados de la siguiente manera:

  • Conjunto inicial: será la colección en donde se encuentran los elementos desde los cuales surgen las flechas que señalan la correspondencia. Por su parte, los elementos que componen esta colección serán denominados antiimagen. Este conjunto recibe en ocasiones también el nombre de conjunto de partida. En el par de correspondencia, los elementos de este Conjunto inicial constituirán el elemento inicial.
  • Conjunto final: por su parte, este conjunto, conocido también como conjunto de llegada, es definido como la colección en donde desemboca la correspondencia, así como las flechas que la señalan. Por otro lado, los elementos de este conjunto son denominados como elementos imagen. Respecto al par de correspondencia, los elementos imagen constituirán el segundo elemento de este conjunto.
  • Grafo: finalmente, el Grafo podrá ser conocido como el conjunto constituido por los distintos pares de correspondencia, que pueden existir entre los elementos del Conjunto inicial y el Conjunto final.

Un ejemplo de este tipo de relación matemática será el siguiente:

Artículo relacionado

En este caso específico, se podrán tener los siguientes conjuntos:

(Conjunto Inicial) A = {1, -1, 2, -2, 3, -3}
(Conjunto final) B= {2, 4, 9}
(Grafo) G= {(1, 2), (-1, 2), (2, 4), (-2, 4), (3,9), (-3, 9)}

Función

Una vez se han revisado cada una de estas definiciones, puede que ciertamente sea mucho más sencillo abordar una explicación sobre las Funciones, las cuales son definidas como un tipo de Correspondencia entre dos conjuntos numéricos, en las que sucede que ningún número del conjunto inicial tiene más de una imagen.

Así mismo, las Matemáticas han señalado que las variables de los valores se han denominado de la siguiente manera:

  • Variable independiente: esta será denominada como la x.
  • Variable dependiente: por su parte, esta variable está denominado como y. De acuerdo a lo que señala esta variable depende a x, es decir que y está en función de x.

Por lo tanto, al momento de escribir la función se deberá hacer de la siguiente manera:

y = f(x)
En donde f(x) se lee “efe de x”

Imagen: pixabay.com

Te puede interesar
Diagrama de Venn para un conjunto
Quizás la mejor forma de abordar la explicación de cómo realizar el Diagrama de Venn en f...
Raíz cuadrada exacta
Antes de avanzar sobre la definición de la Raíz cuadrada exacta, quizás sea conveniente r...
Tipos de monomios
Quizás, antes de entrar a definir y explicar cada uno de los tipos de monomios, concebido...
Operaciones con números enteros
Tal vez lo mejor, antes de avanzar en la explicación de cada una de las operaciones que p...
El rectángulo
Antes de abordar una explicación sobre el Rectángulo, quizás lo más recomendable sea hace...
Leyes de la desigualdad en el Álgebra Elemental...
Previo a abordar las distintas Leyes que el Álgebra Elemental ha postulado en materia de ...
Cómo comprobar el resultado de la multiplicación...
Antes de abordar una explicación sobre la forma de comprobar si el resultado de una multi...
Raíz de un radical
Quizás lo más conveniente, previo a abordar una explicación sobre cómo calcular correctam...

Actualizado por última vez en noviembre 8, 2022 5:04 pm

Compartir

AVISO LEGAL


Este sitio web utiliza cookies tanto propias como de terceros para poder ofrecer una experiencia personalizada y ofrecer publicidades afines a sus intereses. Al hacer uso de nuestra web usted acepta en forma expresa el uso de cookies por nuestra parte... Seguir leyendo

ACERCA DEL SITIO


El pensante es una biblioteca con miles artículos en todas las áreas del conocimiento, una pequeña Wikipedia con ejemplos, ensayos, resumen de obras literarias, así como de curiosidades y las cosas más insólitas del mundo.

DERECHOS DE AUTOR


Todos los derechos reservados. Sólo se autoriza la publicación de texto en pequeños fragmentos siempre que se cite la fuente. No se permite utilizar el contenido para conversión a archivos multimedia (audio, video, etc.)

© 2024 El Pensante